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Abstract

Various inversion formulas in terms of characteristic functions, moments
and real Laplace transforms are studied from the viewpoint of practical
applicability. A new inversion integral in terms of the characteristic func-
tion for integer-valued variables and a new moment inversion formula for
variables in the unit interval are given.

1. Introduction and summary

Let X be a random variable with distribution function F(x)=P(X<x) and
characteristic function @(f)=E(e™)=r(f) ¢°”, where r(s) and 6(f) are real. It
is not necessary that r(f) is non-negative or that 6(¢) belongs to some
particular interval. Put ,u,3=E(X") if this moment is well defined.

For the case that X is integer-valued we present in section 2 a new
inversion formula analogous with the Lévy inversion integral. In section 3
we make some remarks on Lévy’s inversion formula from the viewpoint of
numerical and theoretical applications to non-negative random variables. In
section 4 Lévy’s formula is applied to distributions concentrated to [0, 1].
This yields an inversion formula in terms of moments, since the characteris-
tic function is determined by the moments in this case. For a non-negative
random variable Y this result immediately gives an inversion formula in
terms of the real Laplace transform, by the transformation X=e¢~ Y. In
section 5 this formula is analyzed and some numerical results presented.
Feller (1971, p. 227) gave an inversion formula in terms of moments for
distributions on [0, 1]. In section 6 we modify this formula to get a closer
approximation to F and we simplify the combinatorial expressions occur-
ring in it.

The moment inversion formulas of sections 4 and 6 both give F(x) as a
limit as A—o of expressions of the type CatCa 15T Ca 2t
Cq3M3pt..., Where cy4 , alternate in sign with r and max,|cs, |-—>% as
A—. Consequently the limitation in applying these formulas lies in the
computer’s precision, i.e. the number of digits for the mantissa that can be
stored in a data register representing a real number. We assume a decimal
representation. The convergence properties as precision tends to infinity
are studied. For the formula of section 4, the smoother F is, the faster is the
convergence. This is because ¢(f) tends to zero faster, the smoother F is.
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30 S. I. Rosenlund

On the other hand, the formula of section 6 gives a slow convergence for
continuous distributions, while for discrete distributions the rate of conver-
gence is shown to be exponential if F(x) is computed for x between adjacent
atoms of F. The formulas of sections 4 and 6 thus complement each other.

2. Inversion integrals for integer-valued variables

Assume that X is integer-valued. Then we have the well-known formula

1 [ i .
PX=j)=— He ¥dt, j=0,1,-1,2,~2,...,
(X =J) erL{qﬂ()e J

see e.g. Feller (1971, p. 511). Now the real part of the integrand is even and
the imaginary part is odd, hence

P(X=}) =%f r(t) cos (6(¢)—jo) dt.
)

By induction one can prove the identity
N it(m+n)
s - t . .
26 = g 2" sin(j(n—m+1)/sin(}r), m<n.
j=m

This yields

r —il(m+nyr SINGA(R—m+1) ¢
Pm<X<n)= 1 e ijm+ "__(M
2m ), sin (9
sin(}(n—m+1)1)

=1 f r(t) cos ((0)— 4 (m+n) 1) ‘
T Jy sin (41)

m<n, m and n integers. (1)

For t=0 the integrand is to interpreted as n—m+1. The formula is for
example suitable when X is a linear combination of independent binomial
variables.

If F(x)=0 for x<0 we can put n=x and m=—x, which yields

sin((x+) 1)

- dt, x=0,1,2,... @)
sin ()

Fo=1 j "Re ot
T Jo

This formula has an appealing simplicity, but for numerical purposes it
would normally be better to use (1) with n=x and m=0; the integrand in (2)
oscillates more rapidly than in (1) and would thus need to be computed at
more points for a satisfactory approximation by for example Simpson’s
formula.
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3. On Lévy’s inversion integral

The Lévy inversion formula can be written in the form

A

T | =i+ . 1
F(x)—F()=lim— | @()e sin(Qx=y) ¢ dt, y<x,
Ao JT —A

if F is continuous at x and at y. See e.g. Cramér (1946, p. 93). The analogy
with (1) is evident. As before the real and imaginary parts of the integrand
are even and odd, respectively, hence

F(x)-F(y)= % j r() cos (0O —1(x+y) ) sin (3 (x—y) 1) tdt, 3)
0

with the integral defined at least in the improper Riemann sense. If F(x)=0
for x<0 we can put y=—x, which yields

Fl) =2 f Re (D) sin(xt) 1~ dr, x=0, @
T 0 .

if x is a continuity point of F. This is analogous with (2). Putting y=0 (or
y=—1if P(X=0)>0) in (3) gives a more slowly oscillating integrand than in
(4). The integrand in (4) might however tend to zero faster. For example,
the exponential distribution F(x)=1-—e * has @n=(1-it)™", rt)=(1+)"?
and Re @(r)=(1+1>)"". For theoretical purposes the simplicity of (4) is an
advantage, and we shall use this representation as a basis for the moment
inversion formula of the next section.

4. Moment inversion for distributions on the unit interval

Assume that 0<X=<1. Let a be any positive number and let ¢, be the
characteristic function of X*. Let

A
F0,A)=2 f Req (0t sin(yn)dt, y>0. ®)
T Jo

Then F,(x*% A)—F(x) as A— if F is continuous at x, by (4). Choosing a
suitably might for fixed A give a better approximation to F(x) than just a=1.
We assume that the distribution of X is known through the moments ug,
B=0. We have for all ¢ the expansion

Re g, (1) = 1+, (= iy, 712N, 6)
r=1

It turns out that the required precision in computing (5) from (6) is approxi-
mately proportional to A, see (12). The smoother the distribution function
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of X% is, the faster @,(f) tends to zero as ¢ tends to infinity and the faster the
convergence to F(x) is as A tends to infinity. See Feller (1971, p.514). Asa
rule of thumb one may choose a so that M=} (making X* as nearly
uniformly distributed as possible, roughly speaking), unless something else
indicates otherwise. Let

g(Z)—_'_z—f t"sintdt )
T Jo
and
A
2= 21
a(y,A)= pr .L £ Vsin (yt) dr. 8)

Then (5) can be written
F00,4) = g0A)+ D iy, a,(y, A). ©
r=1

We could replace g(yA) with its limit 1 and still have F,(x* A)—F(x), but
the rate of convergence would in general be slower. The equation (9) holds
even if X is not bounded, provided (6) holds for some >A.

We have the obvious bound

AZr

a,v, A)| < T

(10)

This is actually a rather close estimate, unless y is very small. For example,
if the right side is 10° the left side is normally at least 107, and if the right
side is 10°? the left side is normally at least 10*°, The maximum of the right
side of (10) is attained either for r=[1A] or r= [%A]—l. Applying Stirling’s
formula we get

AZr

A2 AN-15 A
mflx e 2"%#@A) P et (Ao ). 1

Assume that the precision is M decimal digits. Assume further that the
computation entails a numerical error making the last Q of the M digits in a
computed value for s, a,(y, A) unreliable. By (10) and (11) we can then
compute F,(y, A) with T correct decimals if

M>T+0+"log (2" "%)~ 1.5 log A+A Vloge. (12)

For M=13 and T=Q=3 this inequality is satisfied if A<22. Note that uy,,
must be computed with sufficiently many correct decimals.
Solving the integral in (8) we obtain
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r=1 2%
a0, 4)=(my?)"! 3, (-1f DAL (A0 i 1)), a3)
k=0 .

Recognizing the first r terms in the MacLaurin expansions of sin(yA) and
cos (yA) we can also write

hed 2k
a0, 4) = =) 3, () LAK (VA0 gin ) (14)
k=r :

From (14) we can deduce that

— 1V i 2r
ay,4)~ L ERODA (o),

provided sin (yA)=+0. It follows that a,(y, A) alternates in sign and decreases
in absolute value for large 7. The error in terminating the sum in (9) at K will
thus be smaller in absolute value than and have the same sign as the first
omitted term ag,,(y,A), provided K is large enough. Normally
K=[eA/2]+5 will satisfy any desired degree of accuracy, by (10) and
Stirling’s formula. The maximum of (yA)?*¥/(2k)! is attained for
k=[(1+(4(yA)>+1)"?)/4]. For maximal numerical accuracy we should use
(13) for r from 1 up to and including this value and (14) for the remaining
values of r up to K. The summation should go from smaller to larger values
of (yA)?*/(2k)!, i.e. forwards in (13) and backwards in (14). Using recursive
schemes of computation in stages we can keep run times short. We can
simplify a,(y, A) by putting A=(zn+in)ly, n=0,1,2,... Then cos(yA)=0
and sin (yA)=(—1)". Furthermore g(z) is close to 1 at the points z=mn+Jm.
For small y we might not, however, be able to satisfy the inequality (12)
with this choice of A. Formulas similar to (9) can be obtained from other
variations of inversion integrals than (4). The ones tried by us have how-
ever been found to be less tractable numerically than (9).

5. Real Laplace inversion with numerical examples

If Y is a non-negative random variable with distribution function H and
Laplace transform H(s)=E(e~*"), the transformation X=¢~Y turns (9) into
an inversion formula in terms of the real Laplace transform at a lattice
of points. For X we  have u,g:ﬁ(ﬁ). For continuity points y it holds
H(y)=1—F(e™), and hence

H(y)=1-lim (g(e""A)+2 HQar) ale™®, A)). 15)
A—oxo

r=1

Choose a so that I?(a)=%, unless otherwise indicated (see below for such an
indication).
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34 S. I. Rosenlund

For the implementation of this result we have developed a package of
programs with optional precision up to several thousand digits for the
personal computer ABC80. A program for Laplace inversion based on (13),
(I14) and (15) can handle A<195. The summation in (15) is to
[€195/2]1+5=270. For A=195 we require the precision M=89 decimal digits
in order to have T+Q=8, by (12). The restriction A<195 is determined by
internal memory capacity. Memory requirement increases with A2. An-
other restriction is computer time. If the Laplace transform under inversion
can be computed with a fixed number of evaluations of functions that are as
numerically well-conditioned as elementary and cyclometric functions,
then computing time increases with A*. For such Laplace transforms,
which constitute the bulk of applications, computing time for A=195 on the
ABC80 is a matter of hours, so that in any case leaving the computer on
overnight will do the job of computing ,H(Za), ...,H(2a270). Each value for
the distribution function then takes about 10 minutes.

The programs can be obtained by request from the author. A variety of
Laplace transforms have been inverted with good results. The worst cases
are the tails of distribution functions H with heavy tails. This corresponds
to a large mass close to the origin for the transformed variable X=¢~Y. In
the worst cases examined the error in the approximation of H(y) was
estimated to be about 5x1073. For these cases one should choose « so
small that e"*>A is not too small, preferably larger than . The integrand
in (5), with y replaced by e~*, needs to oscillate sufficiently over (0,A).
For nice cases, where ¢,(1)—0 fast as r—oo, this oscillation is not needed.
For distributions with light tails the error was smaller than 10>, Examples
of such nice distributions are:

I. The exponential distribution with ﬂ(s)=1/(1+s).

II. A linear combination of independent binomial variables (the distribu-
tion function has to be computed halfway between jump points).

III. The Laplace transform H(s)=4s"%/(¢*" —e~2"), which arises as a
limit in critical branching processes. The following values were obtained
among others.

y | 0.2 0.4 0.6 1.0 1.8
H(y) | 0.03400 0.29290 0.55028 0.83049 0.97644

For heavy-tailed distributions the rate of convergence in (15), although
slower than for light-tailed ones, was found to be of the order 1/4, anyway.
Examples of heavy-tailed distributions are:

IV. The busy period distribution for the G/M/2 queue, with Laplace
transform

ﬂ(s)zi(l—ﬁ(sfﬂ)) _ 2#13'(s+,u)(1—g(:v)) )
(s+) (1=2F(s+p))  (s+2u—2pg(s)) (1-2F(s+u))
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where u is the intensity of service, E(s) is the Laplace transform of the
inter-arrival distribution and g(s) is the solution in (0, 1) of the equation
z=1:"(s+2,u—2uz)4 See Rosenlund (1978), eq. (16). This one belongs to that
group of unwieldy transforms in queueing theory that are held to be nearly
impossible to invert. We took E(s)=(A/(s+A))** and the traffic intensity
0=1/94=0.8. Some obtained values, with a=0.4 and A=194, follow.

w01 025 075 125 2 5 10
H(y) | 0.095 0.219 0.447 0.547 0.637 0.799 0.883

The error should be smaller than 1073 for uy up to 2 and smaller than
5%1073 for uy=>5 and uy=10.

V. The waiting time in the random order service G/M/m queue, see
Rosenlund (1980). The Laplace transform involves a numerically difficult
integral, which, due to the time restriction, we could compute to only about
20 decimal digits, admitting A=40. Since the tail of this distribution is less
heavy than in the preceding example, this gave an error of about 5% 1073,
Numerical results will be presented elsewhere.

6. On Feller’s inversion for moments

Assume that 0<X<1 and let F,(x)=F(x"*) be the distribution function of
X“. Feller’s (1971, p. 227) inversion formula applied to F,, can be formulat-
ed in the following way. Let B, ¢ be the distribution function for the
binomial distribution with parameters n and 0, that is

[x]
B, o) = (”) #(1-6y~7, x=0. (16)
= M
Let
1
Git) = f B, o(n)dF(6), 0<t<]l. 17
0
Since the limit as n— of B, o(nt) is 1 for 6<t, }for O=¢and 0 for 6>1, we
have
lim G§(x%) = L(F(x)+F(x—0)), 0<x<1, (18)

n—e

and for x=0 the limit is F(0) and for x=1 it is 1. It seems to be best, in
general, to choose a so that u,=}. Expanding (1 —6)" in (16) according to

the binomial theorem, putting (16) into (17) and interchanging integration
and summation turns (18) into a moment inversion formula. Let

a : n i Ny n—j
a = 2 _] : (— ) i :uaH-aj' (19)
Jj=0 i=0
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Then it holds

G =ay .-

We shall write (19) as a simple sum. Rearrangement gives (A for min)

a;,k=1+r§:‘1<-1y(’j)ua,§<—w r.)~
Using the combinatorial identity

g Ty 0, Isr<k

2 “”’(,-) - (—1)*(’;1), o<k<r
we get

S -1
ag =1+ 2 (—1)’“‘(2) <rk )#a,, 0<k<n.

r=k+1

(20)

@n

Now G, is a step function with jumps at 0, 1/n,2/n, ..., 1. The approximation
to F,(x) is improved if G¢ is replaced by the continuous modification H;
obtained by putting HZ(0)=0, H%(1)=1, H()=G4(t) when ¢ is the midpoint
k/n+1/2n in the interval (k/n, (k+1)/n) where G, is constant (k=0,...,n—1),

and H linear between these points. With
by () =aj  x+aj ,_(1—x)

we have

by ()= 1+i (—1y** (’r’) (,:) (x—kiryu,,

r=k

and the representation
2na® ot for0<r<—L
' 2n

a 1 1
H:l;(t)= b”_[nt+%](nt+%—[nt+§]) forEStsl——z;l-
1-2nu,(1-1) for 1-—<r<1.
2n

(22)

(23)

It holds H(x*)—F(x)at points of continuity. To illustrate the improvement
achieved, consider the uniform distribution F(x)=x and take a=1. Then (16)

and (17) give
Gl = (n+ DI(n+1),
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1 1
H() = (nt+hli(n+1), —<t<1—-—,
() = (nt+)/(n+1) o o

which yields

sup |GL(&)—t| = 1/(n+1),

o=<r=<l]

sup |HX0)—1| = (n—1)2n(n+1).
0=t<]

This example also shows that for continuous distributions F we cannot in
general hope for a better rate of convergence than O(1/n). We shall,
however, show that the rate of convergence Gf,(t)—»F(t) is exponential if

u<t<s and P(u<X<s)=0. We shall also show that the required precision is
approximately proportional to n. For a discrete distribution F the method of
this section is thus at least asymptotically better (as precision tends to
infinity) than that of the preceding section, provided the jump points are
known and F(u) is approximated by H,((«”+s%), if u<s are two adjacent

jump points. From (17) we get
' i

F(t)-G:,(t)=f (1-B, 4(n1) dF(B)—j B, o(nt) dF(6). (24)
0 '

Now B,, o(nt) decreases with 8. If u<t<s we obtain

—(1-F(«)) B, ,(nf) < F(u)—G}(t) < F(u)(1-B, (nf)) (25)
or equivalently

(G{0)~B, (n)[(1-B, (1) < F(u) < GY(1)/B, ,(n1). (26)

If [x]<[0(n+1)] the terms of (16) increase with j. Since r<s implies
[nf]<[s(n+1)] we obtain

n

[t} 1 _ yn—[nt]
[nt])s (1=s)

~ t(l—s))""('"l( nt "2(5'(1“917')" - 27
(s(l-t) 2n(1—t)> ) 7

B, (nf) < ([nt]+1) (

The function x(1—x)!~* of x has its maximum at x=¢, so that the last factor
is smaller than one. For the right side of (25) we observe that
1-B,, (nt)=B, 1-,(n(1—t)—0). This proves the exponential rate of con-
vergence in G:,(t)—>F (#). The required precision in computing (22) is deter-
mined by the maximum of (’:) <;), which is attained for r={(2n+1)/3] and
k=[r/2]. 1t is asymptotically 3"*!->/2xn. Assume as in section 4 that the
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precision is M decimal digits and that the computation entails a numerical
error making the last ¢ of the M digits in a computed value for

(T: ; (z—k /r)pror unreliable. Taking into account also the factor z—k /r we
can then for all + compute HS(t) with T' correct decimals if

M > T +Q +og(3'* /am) —%logn +n' log 3. (28)

In computing (22) we note that the maximum of (f:) (;) for fixed n and k is

attained for r = [lz(n +k +1)]., which can be used to determine required preci-
sion when a single value of HS () is wanted.
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Complement to section 5 in "Practical Inversion
Formulas" by Stig I. Rosenlund

It is stated that for heavy-tailed distributiouns
one should take o so small that Aexp(-dy) 2 TM.
In numerical inversions it was found that 9.5
gave the best results; choosing « smaller or
larger yielded larger deviations from kuown
values for the distribution function. We thus
recommend taking

& = mia{7"(3),108(4/9.5M /3 )

for heavy-tailed distributions. For light-tailed
ones it is best to let H(«d) = 3. If it is not
known whether H is light-tailed or heavy-tailed,
compute a few inverted values for some large
y-values with o dependent on y as above. If H
turas out to be light-tailed, recompute with o so
that H(d) = 3.

Experiments on some known continuous distributions,
including one with 1 - H(y) ~ ¢/V¥, gave good
results for arbitrarily large y with errors smaller
than 1077 for A = 195 and o, chosen as above. Even
heavy-tailed discrete distributions C%uld be
inverted with errors smaller than 10°° for y = n+ 3%,
n=0,1, 2, «c. .

For example IV we obtained 0.798 and 0.894 for py
equal to 5 and 10 with o4 as above. If 0.894 is
better than the table’s 0.883, then the latter is
in error by more than 5x107-7.

For continuous light-tailed distributions the

error is much smaller, as remarked. In example IIT
the precision of the values for H(y) was determined
by comparison of inverted values for a sequence of
A up to 195. Since then we have by theoretical
inversion derived the expression

@®
2
H(y) = 1+ 23 (-1 exp(~-y(3nm) 7).
n=1
This formula gives the same values as in the table
of example III.



